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Introduction

Problem, or rather a question which I posed to Professor Zahorski in the winter
1986/87 concerned the set-theoretic and topological “description” of derivatives, quite
generally understood by me. At that time I was a newly fledged master in mathematics
and my knowledge in this matter was rather “conventional”.

After a short period of time Professor gave me in response a letter which I wanted
finally to share with others, in the hope that the Readers will be as curious about its
contents as me at that time.

Remark. In margins of respective pages one can find some comments completing
and updating selected parts of Professor’s letter. Additionally, after Professor’s letter
a collection of few longer pieces of supplementary information and the bibliography
are given.
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Professor’s letter

Well, my paper published in Transaction of the American Mathematical Society inSee paper [56].

1950, but prepared actually in 1939-42, starts with the following words: “characteri-
zation of the class of continuous functions, possessing everywhere the first derivative,
with the aid of their topological and metrical properties is unknown”. It is not im-
portant whether the continuous function or its derivative (in general, discontinuous
in many points) will be characterized. I aimed at characterization of derivative ex-
isting everywhere. On the contrary as in case of analytical functions, in this case
the unbounded functions are more difficult, therefore I put the following stages: I –
bounded derivative, II – finite derivative, III – infinite (in some points) derivative –
for a long time (however > 1900) there is known a proof that the set III is a null
set and, which is more, it happens without the assumption of derivative existence (in
other points) and even the continuity is not needed and it is enough to consider theThis is the

Banach
result [7]. one-sided derivative: the set of all points in which the right-sided infinite derivative

of any function (even the unmeasurable function) exists is the null measure set.
In case of the continuous nowhere differentiable Weierstrass function in each pointProof of this

fact results, for
instance, from
the original
Weierstrass’
proof of this
function
nowhere-
differentiability,
presented for
the first time
in the
Weierstrass’
letter to Du
Bois Raymond
(1875).
Essential in
this matter
seems to be
also the
Banach
theorem (1931)
which will be
cited in third
item of
supplementary
information
given at the
end of this
paper.

one of the Dini derivatives is = +∞, the other is = −∞, but the Dini derivatives
are not the derivatives, similarly as the upper and lower limits of a sequence are not
(in general) the limit of this sequence.

Considering the derivative existing almost everywhere (i.e. except the (L) null mea-
sure set of points), the problem is easier and was solved in 1912 (and published in
1915 or 1916) in the Luzin’s PhD dissertation in Russian (“Integral and trigonometric
series”) – to be more precise one should note that PhD degree was in Russia, even in
the tsarist times, the second kind scientific degree corresponding with our habilitation.
In any case, the postdoctoral dissertations are different everywhere, even in the same
university – this one was of epochal matter considering not only this one problem,
but also several other problems put there. At least one Luzin’s hypothesis (claiming
that the Fourier series of square integrable function is convergent almost everywhere)
appeared to be unlikely true, after Kolmogorov’s examples of the Fourier series of
a function integrable in the first power, divergent almost everywhere, presented in
1922 and published in Polish journal Fundamenta Mathematicae probably in 1923
and such defined series for the L1 function, divergent everywhere, presented in 1926See papers

[33, 55]
and published in C. R. Acad. Sci. Paris in the same year. The outstanding authority
in the matter of trigonometric series, Professor Antoni Zygmund, said in 1960 that it
is certainly false since in L2 the convergence in L2 is typical (Riesz-Fischer Theorem,
1904), not the almost everywhere convergence. Before 1936 Menshov gave the exam-
ples of orthogonal bounded systems with the almost everywhere divergence in L2 and
Kolmogorov put in 1926 something more than hypothesis, published in 1927 in Ger-
man journal Mathematische Zeitschrift (in paper joint with Menshov), saying that it
can be even the trigonometric system, but properly rearranged. Namely he wrote that
he could give such example, however he has never given, there or anywhere else, any
proof nor function – or, which is equivalent, any coefficients of such series nor the way
of rearranging the terms (permutation in the infinite sequence). Many mathemati-
cians (Russians, Hungarians, Americans and probably the others) tried to do that.
I succeeded in 1960, maybe after three weeks of work (and a little bit in 1954), and
the many-years unsuccessful efforts to prove the Luzin’s hypothesis appeared to be
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very useful for this achievement. In 1954, quite quickly as well, I thought that I had
a construction, however I noticed a mistake right before giving a talk for the Polish
Mathematical Society. I gave indeed the talk, but on the completely different and
known, however not to all of the audience, subject – on the so called Young Theorem Probably it

concerns Mrs
G.C. Young,
see [47, 17].

about symmetry (for any function of point on the x axis of numerical values the sets
of right-sided limits of f(xn), for xn → x, xn > x, and left-sided limits for xn < x,
are identical and one of them is equal to f(x). Everywhere? Not necessarily, however
with the exception of the at most countable set of xs – which is better than the null
set.)

Abbreviated, but still clear for the specialists, proof, with a function and permu-
tation certainly, I submitted in 1960 to C. R. Acad. Sci. Paris (they publish within
three weeks but only 1–5 pages, notices with no proofs or with very shortened proofs). See paper [58].

I said to Professor Zygmund, who was then for few days in Warsaw (he lives in
Chicago) that since 1945 I believe in the Luzin’s hypothesis and I have no doubts
caused by the truth of Kolmogorov’s hypothesis that it can be different for the rear-
ranged systems, whereas for the normal order 0, 1, 2, 3, 4, . . . it is exactly as predicted
by Luzin. I announced this in 1961, in C. R. Acad. Sci. Paris as well, but before final
elaborating and reporting it in the Institute of Polish Mathematical Society in War-
saw for Professor S. Mazur – he passed away in November 1981. During the edition
I have found an error. And, since the note was already published in C. R., I announced
in Mathematical Reviews, through the mediation of Professor Zygmund, that there
is no solution, a mistake. Nevertheless, the Luzin’s hypothesis appeared to be true
and has been proven in 1966 by Swedish mathematician L. Carleson, I think about See paper [18].

10 years younger than me. Supposedly he worked about 7 years in good conditions –
on American scholarship at the Stanford University in California. He gave one of the
main talks at the International Congress in Moscow in 1966, chairman for this talk
was Kolmogorov. Luzin did not live to see the proof of his hypothesis, he passed away
in Moscow on 28 February 1950.

And this is the Luzin’s result (construction proof was given in his above mentioned
work – reprint, containing various comments and works of authors giving the solutions See paper [39].

of some Luzin’s problems or similar problems as well, was made in 1950. I had this
book but I lost it somehow during my move to Gliwice in 1970).

It is necessary and sufficient for function g(x) to be almost everywhere the derivative Proof of this
theorem can be
also found in
monograph
[14].

of a continuous function, that g(x) is (L) measurable and almost everywhere finite.

However Luzin does not call this continuous function as antiderivative nor indef-
inite integral of g. It is because we have here a high rank of uncertainty – different First example

of functions,
difference of
which is not
constant on the
given interval
even though
they have
everywhere in
this interval
equal
derivatives,
was given by
Hans Hahn
[27]. Another
example
presented
S. Ruziewicz
(see [45, 46]).

“antiderivatives” do not differ in constant. Indeed, he constructs one of the “an-
tiderivatives”, but it is not at all unique. He uses here his theorem, in which he claims
that for a function measurable on the interval there exists a closed set of the measure
differing less than ε from the length of this interval (certainly, in general smaller than
this length) where f is relatively continuous. One can say, by omitting the isolated
points, that this is the perfect set, i.e. closed and dense-in-itself.

Somebody has presented this result on my seminar at the University of  Lódź,
however I do not recall too much of it and even if I could reconstruct this Luzin’s
“antiderivative”, it would take probably about three months of my good work. It is
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done by the use of some functions defined on sets similar to the Cantor set, but of
positive measure. Necessity of these conditions is relatively simple: it is finite almost
everywhere because the derivative, as I have noticed above, can be +∞ or −∞ only in
the null measure set. Measurability almost everywhere of the derivative of a continuous
function (and even each of four Dini derivatives) is quite easy to prove, probably even
without the assumption about continuity. I wrote something about that in AnnalesProbably paper

[57] is
concerned. of Polish Mathematical Society in 1952, unfortunately I do not remember too much,

however it was probably new at that time. By the way: even if the derivative exists
everywhere, then if for example it is equal to +∞ on the set of cardinality of the
continuum, it is hard to speak about the antiderivative, for example, it is quite easy
to construct two continuous functions possessing everywhere equal derivatives, finite
outside of the Cantor set and equal +∞ on the Cantor set, not differing in a constant.
Every generalization of antiderivative function, for example presented in the second
part of “Outline of the Theory of Integral” by Saks [47] (Polish edition from 1930,English version

of Saks’
monograph
is [47].
Professor
Zahorski refers
here certainly
to the Polish
version [48] of
this book.

French – translation differing in only one chapter, right in the middle, and English
edition, probably from 1937, completely different and more extensive, not known
closely to me since I do not speak English), assumes always that the derivative is
finite almost everywhere, it means with the exception of at most countable set, and
the expression almost everywhere means with the exception of the null measure set,
which obviously can be uncountable or even of cardinality of the continuum. Not
because the derivative would must be finite almost everywhere, like it can be seen in
the mentioned example with the Cantor set, only because in the other case it is hard
to talk about the antiderivative functions differing in a constant. This is the sufficient
condition and I do not know any other less inconvenient.

If the derivative is finite, then for finding the antiderivative the Lebesgue integral is
sufficient. Even if the derivative does not exist on the set of cardinality of the contin-
uum, it is only needed that it exists almost everywhere, since the function satisfying
the Lipschitz condition – or even more, the difference of two monotonic functions,
continuous or not – possesses almost everywhere finite (L) integrable derivative, even
though this integral (as the function of upper limit) in general differs from the dif-
ferentiable function by two elements – the so called discontinuity function – they are
of the first kind here and only for such ones it is defined, and – even if it is contin-
uous – the so called singularity function. Only if it is absolutely continuous (it does
not concern |f |, even though if f is absolutely continuous, then |f | as well), then the
singularity function is equal to 0 for each x. But the Lipschitz functions are abso-
lutely continuous, the integral of a measurable bounded function certainly satisfies
the Lipchitz condition and each measurable bounded function is also (L) integrable
(over intervals of finite length), thus everything is correct.

Some unbounded functions are also (L) integrable, of course functions from among
(L) measurable functions, and always, no matter if f is bounded or not, and even
for functions infinite on the set of cardinality of the continuum and null measure
(if the set would be of measure > 0, then the L integral would not exist), here is

d
dx

x
∫

a

f(t)dt = f(x) almost everywhere. First part of the above mentioned “Outline

of the Theory of Integral” by Saks concerns the (L) integral. Second part is devotedProfessor
Zahorski refers
certainly to the
Polish version
of this book
(see [48]).

to the Perron and Denjoy integrals, the more general integrals than the Lebesgue
integral. Because, unfortunately, when f ′(x) is unbounded, even if it exists and is
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finite everywhere (measurable, of course), it can be not (L) integrable. Then, consid-

ering the definite integrals
x
∫

a

f ′(t)dt = F (x), the problem is solved only by the higher

Denjoy integral, equivalent to the Perron integral, proof of which can be found in
the second part of Saks’ “Outline”. Both these integrals have been defined not just
independently, but completely differently and only later the other authors proved two
theorems – the first, I think, that Denjoy’s definition (more specific) contains the
Perron’s definition, and vice versa which is claimed by the second theorem. Denjoy’s
descriptive definitions are similar to the Lebesgue’s definition, with such difference
that instead of the idea of absolutely continuous (AC) function the idea of absolutely
continuous generalized (ACG) function is applied in the definition of the narrow D
integral and the idea of absolutely continuous generalized in the wider sense func-
tion (ACG∗) is used in the definition of the wide D∗ integral. In D definition the
approximative derivative is used, whereas D∗ definition uses the ordinary derivative
(for ∗ it “should” be more weird, here it is traditionally in opposite). However, the
descriptive definition is not much worth without the constructive definition, because
it does not guarantee the existence of defined elements. In case of D and D∗ inte-
grals the constructive definition is “terrifying”. There are actually the constructions
of integrals of more and more high ordinal classes, finite or countable (similar to the
hierarchy of Baire’s functions and Borel’s sets) starting with the Lebesgue integral
as number 0. So, transferring to higher classes is executed through: 1) the Cauchy
process of creating the improper integrals for isolated points. It is a well known fact
that the L integral includes the R integral. But only the proper integral or the im-
proper absolutely convergent integral. Conditionally convergent improper R integral
comes beyond the L integral (but is included in the first class of D integrals); 2) the
Harnack process – which I prefer to omit, when the integrability in the lower class
is disturbed by some perfect nowhere dense set, such that the integrability occurs in
the intervals of its compliment, whereas in the entire line segment (composed of these
intervals plus this nowhere dense set) the integrability does not occur. But in this set
itself the integrability occurs as well. Perron treated this in the completely different
way, by means of the so called raising and descending functions, probably something
analogous exists for the ordinary differential equations, in which he was involved as
well. Besides, seeking the antiderivative is the simplest version of a differential equa-
tion – only with a number of other complications, therefore to avoid the situation of
too big amount of complications the continuity is assumed, not nicely said, so the
solution from C1 class with the continuous derivative is sought.

The Denjoy integral is called by Russians the Chinczin integral. Chinczin gave
such definition almost in the same time, in about 1916. In foreign spelling the name
is Khintchine, devil knows of which nationality. In Russian it is simply , but
I do not know whether the meaning of this word is the same as in Polish, since the
Chinese in Russian sounds as “kitajec”. The name

Chinczin
sounds as
“Chińczyk”,
which in Polish
language means
the Chinese.

Perron and Denjoy (narrow) integrals serve not only for seeking the antideriva-
tive functions for derivative existing everywhere or (in ACG class) almost every-
where, besides the measurable non-integrable functions exist even in the wider Den-
joy sense, but for seeking definite integrals of functions integrable in this sense, and

d
dx

x
∫

a

f(t)dt = f(x) almost everywhere for the narrow integral, approximative d
dx

for
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the wide integral, both give for
x
∫

a

f(t)dt = F (x) the ordinary continuity with respect

to x, and even more – ACG or ACG∗. The wide Denjoy integral gives the antideriva-
tive function for the approximative derivative, which is better to omit.

Incidentally, Denjoy has defined some definite integral coming beyond D and D∗,
particularly for the trigonometric series. I do not know this definition, I have never
seen it and I doubt whether I could solve this problem (having probably more than
one solution – for example, whether each wide definition would be good enough, the
narrow definition rather not, however even this is questionable). This problem has
been mentioned also by Luzin in his PhD dissertation, but Luzin did not solve it and
maybe - I do not know exactly - he only schematically specified it. It is about the
following:

Let us assume that the trigonometric series a0

2 +
∞
∑

n=1
(an cosnx + bn sinnx) is

everywhere convergent to a finite function f(x), certainly of the first Baire class.
According to the theorem proved by Cantor in 1870 roku, coefficients an, bn are
uniquely determined by function f (more precisely, Cantor proved that if f(x) = 0
for each x, then all an, bn = 0, which is certainly equivalent – proof of this theorem,
although is called as “elementary”, is not so easy and can be found, for example, in
“Principles of differential and integral calculus” by S. Kowalewski, German, translatedAuthor of these

“Principles
. . . ” is Gerhard
Kowalewski
(1876-1950).
See also item 4
of
supplementary
information.

into Polish by I. Roliński. When in 1928 in 7th grade of primary school I was reading
Kowalewski’s book, I could not know that I will meet, the deceased already, Roliński
personally after 1948 in  Lódź. He was the honored teacher in secondary schools, the
popularizer and, as one can see, the translator, after war the professor in Pedagogical
Academy in  Lódź and after joining it with University of  Lódź he became the professor
of this university. He did not have his own results but he was a really cool fellow, level-
headed and wise, with the sense of humor and good manners, not despotic to students
and workers of lower rank. He was also the brother-in-law of Rozwadowski who was
the bishop of  Lódź at that time). Problem: how to define an integral, such that coef-
ficients an, bn could be determined by using the known Euler-Fourier formulae with
the integral according to this definition?

After Cantor, the uniqueness theorem was generalized, first in a case when f(x) = 0See also item 5
of
supplementary
information.

with the exception of at most countable set, it was obvious that one could not resign
from the set of measure > 0, but for the null measure sets some troubles arose – for
some, the so called U , the theorem was true, for others, the so called M , the theorem
was false.

Many works concerned the sets U (unicite – uniqueness) and M have been writtenFor sets U and
M, we propose
to take a look
into [59, 9] and
[32].

by A. Rajchman, docent in the University of Warsaw, killed in Dachau probably in
1941, Zygmund, Mrs N. Bari, Russian with French or Italian surname, the author
of monograph devoted to the trigonometric series, competitive with the Zygmund’s
monograph, but in Russian – I do not know whether Americans translated it (Bari inThere exists an

English
translation [9]. 1961 in the age of 60, being almost blind but wanting often to walk without assistance,

during the (domestic) Forum of Mathematicians in Leningrad, got run over by a tram
or electric train.) and, first of all, Menshov, I think he still lives but is at least 85
years old.

It is known that if f is (L) integrable, then the coefficients are expressed by means of
(L) integrals, thus, in particular, if f is (R) integrable, then by means of (R) integrals.



Professor Zygmunt Zahorski’s “lecture” on derivatives. . . 87

But what if f is not (R) integrable? Denjoy gave in about 1923 the required definition
of integral (and he proved the formulae). Whether they concern also the exception of
countably many points – I do not know, and the uncountable would threaten with
something maybe worse than the M sets, which does not mean that one cannot try.
I suppose that till today the characterization of U (null measure) sets is not known
or, what is equivalent, of the M (null measure) sets. I did not deal with this subject
by myself.

Euler himself proved his formulae, but in completely bad way, what one cannot See item 2 of
supplementary
information.have any grudge against him for, because there was no proper definition of an integral,

or even of a derivative (equal to the quotient of “infinitely small” increments, it was
said at that time, not using the concept of limit), or sufficiently wide concept of
a function (they were introduced only in 1837 by Dirichlet and supposedly at the same
time by Lobaczevski) – the first proper definition of a definite integral was given by
Cauchy, and he has done this only for continuous functions, after 1800, and Riemann
transformed it, in about 1850, for these discontinuous functions, for which it could
be applied to, characterized since Lebesgue’s days as bounded and continuous almost
everywhere. Euler was precise in works on the integer numbers theory, however in
analysis, not precise by necessity these days, he did a lot and he had a good nose for it –
he obtained results correct in general, despite some inaccuracies, first-class intuition.
In view of incorrectness of his proof, the trigonometric series theory went in two
directions: 1) resignation of the proof, which can be correctly done by transferring to
definition: series with coefficients computed in such a way with the aid of function f Very good

positions
referring to the
history of
Fourier series
and the
“priority”
problem are
papers
[28, 12, 20] and
[60].

called the Fourier series of function f (the names are traditionally undeserved – the
Fourier series have been introduced by this author in 1822 in the book concerning
the heat conduction equation (partial differential equations), d’Alembert before 1800
considering (partial differential equation as well) the vibrating string equation, and
Euler in about 1750 considering the periodic phenomena, for example astronomical,
it means that Euler was the earliest, Fourier the latest), not taking care (as Euler
wanted) if it is convergent and if exactly to f . It does not mean that the problem was
get off lightly, it was only transformed to some other problem – one can investigate
later if it is convergent to f , and even if it is not, how f can be found by using it – for
example, it turned out (Lebesgue’s proof) that the so called first arithmetic means
of partial sums converge almost everywhere to f and, which is more, in L1 – Fejer
proved this earlier in the continuity points and the uniform convergence of the first
means on the whole x axis in case when f is continuous everywhere and periodic
with period 2π. Both of these theorems make a part of elementary analysis, the thing
is that some functions from L1 can have not a one continuity point, but almost all
points are their so called Lebesgue points – I omit the definition, and in these points
exactly this convergence holds. In L2 (for each orthogonal expansion, not only the
trigonometric one) the convergence → 0 holds in the sense of integral distance, i.e.
in the metric of Hilbert space L2. Then admittedly the sequence of partial sums is It concerns the

L. Carleson
result [18].
More
information
can be found
in [29] (see also
[10, 11, 26,
22]).

only convergent in measure (I omit the definition) and not almost everywhere, but
the subsequence convergent almost everywhere may be selected – in the trigonometric
system it has been known for a long time that S2n is enough, now (since 1966) we
know that . . .Sn itself, meaning the whole sequence S.
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Second direction went into the uniqueness. Yet Riemann did practically correct
proof of the Euler theorem and for the simplest function, everywhere equal to “0”,
because even for this function the proof was missing and the one made by Euler would
be incorrect here as well. Last word till now is given by the mentioned Denjoy’s work.
He died recently at the age of 90. I saw him lately in Bulgaria (Varna) in 1967.

Let me return to the actual subject. Well, in paper [56], mentioned at the begin-M
k

and M
k

classes are
called, which is
obvious, the
Zahorski
classes;
and Professor
Zahorski used
letter M

(respectively
M) from the
initial of name
of his
sweetheart at
that time.

ning, I defined six classes of sets Mk, k = 0, 1, . . . , 5, five classes of functions Mk,
k = 1, 2, . . . , 5 and class J = functions of the first Baire class taking all the interme-
diate values in each interval, which is called the Darboux property. This property is
possessed (elementary analysis) by all the continuous functions but not only – it is
also possessed by the approximatively continuous functions and also not only – by
the derivatives existing everywhere, even if they are not approximatively continuous,
as well. Proof for the derivatives is easy. It is sufficient to prove that if f ′(a) > 0,

Beautiful
application of
the Darboux
property for
derivatives can
be found in
paper [54],
where the
“equivalence”
between the
fundamental
theorem of
integral
calculus and
the Lagrange
mean value
theorem is
proved.

f ′(b) < 0, (or conversely), a < b, then there exists ξ ∈ (a, b) such that f ′(ξ) = 0. This
is the complete analogy of the Rolle Theorem, so it is strange that many manuals
for elementary analysis omit this fact. In considered case the absolute maximum of
f in [a, b] should be taken, but it cannot be taken in a or in b either, therefore in
ξ within the interval. But then f ′(ξ) = 0 (often called as the Fermat Theorem in
analysis – certainly his theorem saying that each natural number is a sum of at most
four squares of natural numbers is much more spectacular). In the opposite case, the
absolute minimum should be considered.

Equally easy is belonging to the first Baire class. If f ′(x) exists everywhere then
f ′(x) = lim

n→∞
n(f(x+ 1

n
)−f(x)) and functions fn(x) = n(f(x+ 1

n
)−f(x)) are, for each

fixed n, continuous. These two necessary properties of the everywhere existing deriva-
tive have been certainly known for the long time. Lebesgue gave a very simple exam-

ple that they do not characterize the derivative: functions f(x) =

{

1 for x = 0
sin 1

x
for x 6= 0

,

g(x) =

{

0 for x = 0
sin 1

x
for x 6= 0

are both of the first Baire class with the Darboux property,

so if they would be the derivatives (bounded, as it can be seen), then the function

f(x) − g(x) =

{

1 for x = 0
0 for x 6= 0

would be derivative as well, which is impossible, since it

does not have the Darboux property. Thus, f , or g, (or both) is not the derivative.
Function f − g belongs to the first class, which obviously must happen. I cited this
example because I still use its tiny modifications for creating other (simple, as well)
counterexamples. Direct proof of the fact that f is not a derivative would be not much
difficult, but what for. Well, for a long time not very difficult theorem saying that f

belongs to the first class if for each a ∈ R sets {x : f(x) > a} and {x : f(x) < a} are
of the Fσ class has been known. It is even enough to know that for the set of valueSee for

example [38].
a, dense on the y axis, even countable. Therefore the sets of all my classes belong
to the Fσ class and the empty set I include to all of them, in order to avoid the
exceptions caused by it (one cannot contradict that it does not belong, the so called
truth in empty way). The definition is not trivial only if the set is nonempty. We
have M0 ⊃ M1 ⊃ M2 ⊃ M3 ⊃ M4 ⊃ M5 and all these inclusions denote proper
subsets (which I say before the definition, but which can be justified only after the
definition). Definitions: E ∈ M0 if each point x ∈ E is the both-sided limit point for
E; E ∈ M1 if each point x ∈ E is the both-sided condensation point for E, that is,
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in each one-sided neighbourhood x, (x − δ, x) and (x, x + δ), δ > 0 the uncountable
part of set E is included (it means of cardinality of the continuum, since it is the
Borel set); E ∈ M2 if this part is of the measure > 0; E ∈ M3 (it can be easier,
however it is done like that for the purpose to enclose also M4 where complications
cannot be avoided – I am full of doubts whether I could recall these few quantifiers,
even though I invented this condition on my own, and I rather do not feel like ap-
proaching the bookcase for reprint, however I will try without the reprint – if there
exist the sequences: of closed sets {Fn} and of numbers {ηn}, ηn > 0, such that for
every x ∈ Fn and ε > 0 there exists δ > 0, such that if hh1 > 0, |h + h1| < δ, h

h1
< ε

then |(x+h,x+h+h1)∩E|
|h1|

> ηn (| · | in numerator denotes the Lebesgue measure), interval

(x+ h, x+ h + h1) is written here without the usual agreement that the first number
denotes the left bound; it is like this if h > 0, in opposite if h < 0, but for not making
the exceptions in the entire paper this agreement is not applied). I will not bet if it
is like this, or equivalently, or completely wrong – I just want to show complexity of
this condition; E ∈ M4 if E ∈ M3 and for each n, ηn > 0; E ∈ M5 if each point

x ∈ E is its density point, which means that lim
h→0+

|(x−h,x+h)∩E|
2h = 1.

I include function f to class Mk, if for each a ∈ R sets {x : f(x) > a} and
{x : f(x) < a} belong to Mk. Unlike for the sets, I prove that M0 = M1 = J (let us
recall that class J is the first Baire class with the Darboux condition), therefore class
M0 is redundant. Certainly Mk ⊃ Mk+1 and for k > 1 it is the proper subset, on
the contrary as for k = 0. Well, I proved there that class M4 precisely characterizes
the sets {f ′(x) > a} (alternatively < a) for the bounded derivative, for {f ′(x) > a}
it takes place even just for the bounded from above f ′ – it is one of two most difficult
theorems in this paper. Necessity is even tolerable, but sufficiency – few fine pages
with no “waffle”, since one can waffle during the lecture or in the unsuccessful, because
“over-waffled”, script (for external students – I always thought that preparation of
external students is miserable, so it is exactly why one should not “waffle” too much to
them – these wretches learn by heart and get lost immediately); really good teachers
waffle a little bit even in manuals for normal students, for example Mostowski, but as
little as possible – however the printed papers I wrote without waffling. It happens
that even the 1-page proof is tough (and the 10-page proof can be easier). The main
idea is the same as in (not known closely to me) Carleson’s paper devoted to the Luzin
hypothesis, even though I wrote it many years earlier, I do not know whether he read
it, anyway I did not patent this idea, since it is simple and maybe used by somebody
else before me. This is the analogy to division of, for example, agricultural property
in the successive inheritance cases, for simplification, always by half but satisfying
two conditions: 1) one can never divide regions 6 4 hectares, 2) one can never divide
if profitability, for instance the soil quality, of at least one half would decrease below
a constant number predetermined for every divisions. Then, after the finite number of
divisions, the region will break down into the parts unequal, in general, with respect to
the area and such that none can be divided any more. In my work this rule of division
is represented by preserving the mean density of a given set above some number, in
Carleson’s work by something more complex, however, both of us divide the intervals
in half with the aid of a middle point. One can of course consider more than two
restrictions of division, but it was not necessary in these papers. Later two estimations
resulted in my work – one for these segments for which the second prohibition did not
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work (maximal numbers of divisions, the shortest possible segments) and the second
one for the segments stopped to be divided earlier – each of these sets can be empty,
but not both of them. What resulted in Carleson’s work – I do not know and I do
not want to read it for not making my work harder, since it is already hard enough.
None of the “laws” forces me to do this work, but I want to do it. Anyway, from June
1981 till October 1984 I was dealing with something else and something more difficult
(I think, because it is older and unsolved till now, however it is not the evidence of
its higher difficulty). From October 1984 till February 1986 the trigonometric series
again and from February 1986 the other thing – alternately.

What next in this paper? Theorems that the finite f ′ belongs to M3, infinite in
some points ∈ M2, but even in this case the sets {a < f ′(x) < b} for a and b, finite as
well as infinite, are in M3. Thus, all the conditions are stronger than the previously
given M1, but still these are not the characterizations, only the necessary conditions.

And what about M5? This is the characterization of A class – class of the approx-See item 6 of
supplementary
information. imatively continuous functions which are, as it can be seen, of the first Baire class,

not conversely. This can be added to the package, since it was known – given probably
by Maximoff in 1936 in Japanese journal Tôhoku Math. Journal. Does the bounded
derivative belong to M5? As it can be seen, it does not have to. Or conversely, does
the function from M5 = A must be a derivative? If it is bounded, yes, if unbounded,
not necessarily. Moreover, the example patterned on the mentioned Lebesgue’s ex-
ample with sin 1

x
(concerned the class J, the widest one) shows that belonging of

the bounded function to M4 class does not guarantee that it is a derivative. That
is, M4 does not give the characterization of bounded derivatives, even though M4

gives the characterization of sets {f ′(x) > a} for these derivatives. This implies that
the class of bounded derivatives cannot be characterized by layers, with the aid of
distribution function, i.e. functions a 7→ {g(x) > a}. I know from Professor Lipiński
that some American wrote that in this paper the problem of such characterization of
bounded derivatives had been posed. Nothing of that kind. Question about “M

4
1

2

”

class concerns some other (I do not know which one) characterization, not by means
of distribution function which is written there clearly. It is because (confining to the
bounded functions) their belonging to M5 is sufficient for them to be derivatives,
however it is not necessary – this condition is too strong. And belonging to M4 is
necessary, however not sufficient – the condition is too weak (bounded M4 ⊃ class of
bounded derivatives ⊃ M5 with restrictions, both inclusions are proper). Neugebauer,
the American, characterized indeed the derivatives (I just do not know whether theyMentioned here

the Neugebauer
theorem
characterizing
the derivatives
(with the
proof) and
many more
information in
this subject
can be found,
for example, in
mono-
graphs [14]
and [25]. See
also item 6 of
supplementary
information.

were only bounded), but he gave the condition not differing too much from the defini-
tion of derivative, that is from the trivial condition mentioned here at the beginning.
I saw this, but I do not remember. Professor Lipiński (University of Gdańsk) knows
something more about that. Class of bounded derivatives should be = M4

1

2

bounded

(since the function belonging to M5 does not have to be bounded, belonging to M4

does not have to be either). The M
4

1

2

sets are not needed of course.
This is the most exhaustive answer I can give you for your question. Anyway for

over 30 years I have not dealt with this subject-matter or, in general, with the real
functions either. I work on trigonometric series, as a matter of fact on one problem
concerning them – the convergence almost everywhere in a set, convergence in a point,
even though the known conditions are too strong (sufficient, not necessary ones), it
is not worth to deal with them, the convergence “takes place when it takes place”,
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after all too complicated conditions are not worth too much. And sometimes I work
on something else, for a rest or for a change, or even because the cat looking after
one hole, dies.

Sincerely yours, Z.Z.

Some additional pieces of information (R.W.)

1. Professor Zahorski’s letter perfectly matches with [61] (Scientific Note created on
the occasion of 70 anniversary of Professor’s birthday, containing, among others,
Professor’s biography – which is included, in Polish and English version, in this
monograph – and list of his works; papers presented there have been prepared by
the very noble, international group of Professor’s former students, colleagues and
continuators of Professor’s idea; definitely valuable scientific publication, deserving
fame). It also gives the author’s take on the concept of Zahorski’s classes, on the
Carleson theorem, etc. Moreover, this letter completes the opinions on the given
issues of the other Polish authority in the field of real functions – Professor Jan
Lipiński, included in [61], in his survey.

2. In 2007 the 300 anniversary of L. Euler’s birthday was celebrated. This event
gave a new occasion to study his works. In connection with this and not only
“in this connection”, we understand today much better the methods of proving
of this genial mathematician. Even though this author seems to be far from the
present-day formalism (Professor Zahorski writes about this), many elements of
his creation can be translated on the language perfectly correct today, the purely
formal as well as by the usage of limits (a good example of this phenomenon can
be papers [1, 2, 6, 36, 37]).

3. The Banach theorem, mentioned on the margin of page 82, sounds as follows:

Set of all functions f ∈ C[0, 1], for which in each point x ∈ [0, 1) we have

D+f(x) = −∞ or D+f(x) = ∞

and concurrently in each point x ∈ (0, 1] we have

D−f(x) = −∞ or D−f(x) = ∞,

is residual.

Italian mathematician Pier Mario Gandini, in paper [24], generalized this theo-
rem for spaces C([0, 1]n), additionally extending the adequate residual set to the
complement of σ-porous set.

4. There exists at least one more reason for which one should mention Gerhard
Kowalewski. He is the author of the following theorem on the mean value for the
system of equations formed from n integrals.
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Theorem ([34]). Let x1, . . . , xn ∈ CR[a, b]. There exist numbers t1, . . . , tn ∈ [a, b]
and nonnegative real numbers λ1, . . . , λn such that

n
∑

k=1

λk = b− a

and
b

∫

a

xr(t)dt =
n
∑

k=1

λkxr(tk), r = 1, . . . , n.

In paper[35] Kowalewski generalized this theorem by substituting the linear mea-
sure dt by the weight measure F (t)dt, where F ∈ C[a, b], F is of the constant sign
on (a, b) and

n
∑

k=1

λk =

b
∫

a

F (t)dt.

Only in 2008, Slobodanka Janković and Milan Merkle in paper [31] extended this
theorem for any intervals I ⊂ R by introducing in place of measure F (t)dt any
finite positive measure µ defined on the Borel σ-field of interval I (functions xk

belong then to the set CR(I) ∩ Lµ(I), k = 1, . . . , n, respectively).
Moreover, as it is noticed by these authors, except two citations the Kowalewski’s
results remained completely unknown – how unfairly. The above results, together
with the proofs, are also presented in monograph [30].

5. History of the uniqueness theorems for trigonometric series (including the multiple
trigonometric series) still lasts (see papers [3, 4, 5, 55, 59]). It is worth to mention
additionally the Du Bois Reymond result [13] from 1876, a little bit younger in
relation to the Cantor result, cited and proved in [59] as well as in [9]:

Theorem A. If trigonometric series

a0

2
+

∞
∑

n=1

(

an cos(nx) + bn sin(nx)
)

is convergent everywhere to a finite sum f(x) integrable on [0, 2π], then it is the

Fourier series of function f(x).

Let us notice (after Nina Bari [9]) that, originally, Du Bois Reymond referred this
result to integrability in the Riemann sense (his result holds true also in the case
when we neglect the convergence of the trigonometric series on some countable
set). Appropriate extension of Theorem A for the functions integrable in Lebesgue
sense we owe to Lebesgue himself (however Theorem A is still called the Du Bois
Reymond theorem). Obviously, Theorem A implies the discussed here Cantor’s
result from 1870.
At the end let us also recall that the similar uniqueness theorems for the Haar
and the Walsh series have been discussed and solved, among others, by Russians
W.A. Skvorcov (see [50, 51, 52]) and M.G. Plotnikov (see [42, 43, 44]). The subject
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of uniqueness of the multiple trigonometric series is also discussed in the third
chapter of V.L. Shapiro’s monograph [49].

6. The characterization of derivatives in the class of bounded functions f : (0, 1) → R

was achieved by I. Maximoff (see [40, 41]), mentioned in the ending of Professor’s
letter:

Theorem B. Bounded function f : (0, 1) → R is equivalent in the Lebesgue sense

to the derivative if and only if f is of the first Baire class and, concurrently,

satisfies the Darboux condition.

This theorem, together with the beautiful proof based on the David Preiss concep-
tion, can be found in fourth chapter of monograph [25]. Funnily enough, this proof
effectively uses the Neugebauer theorem characterizing the (bounded) derivatives,
mentioned in Professor’s letter. Authors of monograph [25] call also in question
the correctness of the original, i.e. given by I. Maximoff, proof of Theorem B (if
it is true, then the author of the first correct proof of this theorem would be the
already mentioned D. Preiss).
Moreover, as it was shown in [25] after Goffman and Neugebauer, the characteri-
zation from Theorem B holds also in the class of bounded functions f : (0, 1) → R,
equivalent in the Lebesgue sense to the approximative derivative.
More outlined information devoted to the characterizations of derivatives can be
found in papers [15, 23] and [19]. Especially in the latter the following interesting
result achieved by Krzysztof Chris Ciesielski is given [19, 53]:

Theorem C. Neither of the following function classes is topologicable: class Λ

of all derivatives of the Zahorski class Mk, k = 1, ..., 5, class of all functions

satisfying the Darboux condition, class of all measurable functions and class of all

functions possessing the Baire property.
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Phys. (Schlömilch Z.) 43 (1896), 118–120.
36. Laugwitz D., Rodewald B.: A simple characterization of the Gamma Function. Amer. Math.

Monthly 94 (1987), 534–536.
37. Laugwitz D.: On the historical development of infinitesimal mathematics. Amer. Math. Monthly

104 (1997), 447–455.
38.  Lojasiewicz S.: Introduction to Real Functions Theory. PWN, Warsaw 1973 (in Polish).

39. Luzin N.N.: Integral and trigonometric series, editing and comments – N.K. Bari and D.E. Men-
shov. Goztiechizdat, Moscow 1951 (in Russian).

40. Maximoff J.: On continuous transformation of some functions into an ordinary derivative. Ann.
Scuola Norm. Super. Pisa 12 (1943), 147–160.
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